

Lunr.py 🌖

A Python implementation of Lunr.js [https://lunrjs.com] by Oliver Nightingale [https://github.com/olivernn].

A bit like Solr, but much smaller and not as bright.

This Python version of Lunr.js aims to bring the simple and powerful full text search
capabilities into Python guaranteeing results as close as the original
implementation as possible.

What does this even do?

Lunr is a simple full text search solution for situations where deploying a full
scale solution like Elasticsearch isn’t possible, viable or you’re simply prototyping.
Lunr parses a set of documents and creates an inverted index for quick full text
searches in the same way other more complicated solution.

The trade-off is that Lunr keeps the inverted index in memory and requires you
to recreate or read the index at the start of your application.

Interoperability with Lunr.js

A core objective of Lunr.py is to provide interoperability with the JavaScript
version.

An example can be found in the MkDocs documentation library [http://www.mkdocs.org/].
MkDocs produces a set of documents from the pages of the documentation and uses
Lunr.js [https://lunrjs.com] in the frontend to power its built-in searching
engine. This set of documents is in the form of a JSON file which needs to be
fetched and parsed by Lunr.js to create the inverted index at startup of your application.

While this is not a problem for most sites, depending on the size of your document
set, this can take some time.

Lunr.py provides a backend solution, allowing you to parse the documents in Python
of time and create a serialized Lunr.js index you can pass have the browser
version read, minimizing start up time of your application.

Each version of lunr.py
targets a specific version of lunr.js [https://github.com/yeraydiazdiaz/lunr.py/blob/master/lunr/__init__.py#L12]
and produces the same results as it both in Python 2.7 and 3 for
non-trivial corpus of documents [https://github.com/yeraydiazdiaz/lunr.py/blob/master/tests/acceptance_tests/fixtures/mkdocs_index.json].

Lunr.py also serializes Index instances respecting the
lunr-schema [https://github.com/olivernn/lunr-schema] which are consumable by
Lunr.js and viceversa.

Installation

pip install lunr

An optional and experimental support for other languages thanks to the
Natural Language Toolkit [http://www.nltk.org/] stemmers is also available via
pip install lunr[languages]. The usage of the language feature is subject to
NTLK corpus licensing clauses [https://github.com/nltk/nltk#redistributing].

Please refer to the
documentation page on languages [https://lunr.readthedocs.io/en/latest/languages/]
for more information.

Usage

First, you’ll need a list of dicts representing the documents you want to search on.
These documents must have a unique field which will serve as a reference and a
series of fields you’d like to search on.

Lunr provides a convenience lunr function to quickly index this set of documents:

>>> from lunr import lunr
>>>
>>> documents = [{
... 'id': 'a',
... 'title': 'Mr. Green kills Colonel Mustard',
... 'body': 'Mr. Green killed Colonel Mustard in the study with the candlestick.',
... }, {
... 'id': 'b',
... 'title': 'Plumb waters plant',
... 'body': 'Professor Plumb has a green plant in his study',
... }]
>>> idx = lunr(
... ref='id', fields=('title', 'body'), documents=documents
...)
>>> idx.search('kill')
[{'ref': 'a', 'score': 0.6931722372559913, 'match_data': <MatchData "kill">}]
>>> idx.search('study')
[{'ref': 'b', 'score': 0.23576799568081389, 'match_data': <MatchData "studi">}, {'ref': 'a', 'score': 0.2236629211724517, 'match_data': <MatchData "studi">}]

Quick start

First, you’ll need a list of dicts representing the documents you want to search on. These documents must have a unique field which will serve as a reference and a series of fields you’d like to search on.

>>> from lunr import lunr
>>>
>>> documents = [{
...: 'id': 'a',
...: 'title': 'Mr. Green kills Colonel Mustard',
...: 'body': """Mr. Green killed Colonel Mustard in the study with the
...: candlestick. Mr. Green is not a very nice fellow."""
...: }, {
...: 'id': 'b',
...: 'title': 'Plumb waters plant',
...: 'body': 'Professor Plumb has a green and a yellow plant in his study',
...: }, {
...: 'id': 'c',
...: 'title': 'Scarlett helps Professor',
...: 'body': """Miss Scarlett watered Professor Plumbs green plant
...: while he was away on his murdering holiday.""",
...: }]

Lunr provides a convenience lunr function to quickly index this set of documents:

>>> idx = lunr(
... ref='id', fields=('title', 'body'), documents=documents
...)

For basic no-fuss searches just use the search on the index:

>>> idx.search('kill')
[{'ref': 'a', 'score': 0.6931722372559913, 'match_data': <MatchData "kill">}]
>>> idx.search('study')
[{'ref': 'b', 'score': 0.23576799568081389, 'match_data': <MatchData "studi">},
{'ref': 'a', 'score': 0.2236629211724517, 'match_data': <MatchData "studi">}]

Using query strings

The query string passed to search accepts multiple terms:

>>> idx.search('green plant')
[{'ref': 'b', 'score': 0.5023294192217546, 'match_data': <MatchData "green, plant">},
{'ref': 'a', 'score': 0.12544083739725947, 'match_data': <MatchData "green">},
{'ref': 'c', 'score': 0.07306110905506158, 'match_data': <MatchData "green, plant">}]

The index will search for green OR plant, a few things to note on the results:

	document b scores highest because plant appears in both fields and green appears in the body

	document a is second includes only green but in the title and the body twice

	document c includes both terms but only on one of the fields

Query strings support a variety of modifiers:

Wildcards

You can use * as a wildcard anywhere in your query string:

>>> idx.search('pl*')
[{'ref': 'b', 'score': 0.725901569004226, 'match_data': <MatchData "plumb, plant">},
{'ref': 'c', 'score': 0.0816178155209697, 'match_data': <MatchData "plumb, plant">}]
>>> idx.search('*llow')
[{'ref': 'b', 'score': 0.6210112024848421, 'match_data': <MatchData "yellow">},
{'ref': 'a', 'score': 0.30426104537491444, 'match_data': <MatchData "fellow">}]

Note that, when using wildcards, no stemming is performed in the search terms.

Fields

Prefixing any search term with <FIELD_NAME>: allows you to specify which field a particular term should be searched for:

>>> idx.search('title:green title:plant')
[{'ref': 'b', 'score': 0.18604713274256787, 'match_data': <MatchData "plant">},
{'ref': 'a', 'score': 0.07902963505882092, 'match_data': <MatchData "green">}]

Note the difference with the example above, document c is no longer in the results.

Specifying an unindexed field will raise an exception:

>>> idx.search('foo:green')
Traceback (most recent call last):
...
lunr.exceptions.QueryParseError: Unrecognized field "foo", possible fields title, body

You can combine this with wildcards:

>>> idx.search('body:mu*')
[{'ref': 'c', 'score': 0.3072276611029057, 'match_data': <MatchData "murder">},
{'ref': 'a', 'score': 0.14581429988419872, 'match_data': <MatchData "mustard">}]

Boosts

When searching for several terms you can use boosting to give more importance to the each term:

>>> idx.search('green plant^10')
[{'ref': 'b', 'score': 0.831629678987025, 'match_data': <MatchData "green, plant">},
{'ref': 'c', 'score': 0.06360184858161157, 'match_data': <MatchData "green, plant">},
{'ref': 'a', 'score': 0.01756105367777591, 'match_data': <MatchData "green">}]

Note how document c now scores higher because of the boosting on the term plant. The 10 represents a multiplier on the relative score for the term and must be positive integers.

Fuzzy matches

You can also use fuzzy matching for terms that are likely to be misspelled:

>>> idx.search('yellow~1')
[{'ref': 'b', 'score': 0.621155860224936, 'match_data': <MatchData "yellow">},
{'ref': 'a', 'score': 0.3040972809936496, 'match_data': <MatchData "fellow">}]

The positive integer after ~ represents the edit distance, in this case 1 character, either by addition, removal or transposition.

Term presence (new in 0.3.0)

As mentioned above, Lunr defaults to searching for logical OR on terms, but it is possible to specify the presence of each term in matching documents. The default OR behaviour is represented by the term’s presence being optional in a matching document, to specify that a term must be present in matching document the term must be prefixed with a +. On the other hand to specify that a term must not be included in a matching document the term must be prefixed with a -.

The below example searches for documents that must contain “green”, might contain “plant” and must not contain “study”:

>>> idx.search("+green plant -study")
[{'ref': 'c',
 'score': 0.08090317236904906,
 'match_data': <MatchData "green,plant">}]

Contrast this with the default behaviour:

>>> idx.search('green plant study')
[{'ref': 'b',
 'score': 0.5178296383103647,
 'match_data': <MatchData "green,plant,studi">},
 {'ref': 'a',
 'score': 0.22147889214939157,
 'match_data': <MatchData "green,studi">},
 {'ref': 'c',
 'score': 0.06605716362553504,
 'match_data': <MatchData "green,plant">}]

To simulate a logical AND search of “green AND plant” mark both terms as required:

>>> idx.search('+yellow +plant')
[{'ref': 'b',
 'score': 0.8915374700737615,
 'match_data': <MatchData "plant,yellow">}]

As opposed to the default:

>>> idx.search('yellow plant')
[{'ref': 'b',
 'score': 0.8915374700737615,
 'match_data': <MatchData "plant,yellow">},
 {'ref': 'c',
 'score': 0.045333674172311975,
 'match_data': <MatchData "plant">}]

Note presence can also be combined with any of the other modifiers described above.

Building indices

We briefly skimmed over creating indices in Lunr in the searching section, let’s go into more detail around what we need to build a Lunr index.

The lunr function

The main entry point to Lunr is the lunr function. It provides a simple way to create an index, define fields we’re interested in and start indexing a corpus of documents.

We do that simply by providing:

	A ref string specifying the field in the documents that should be used as a key for each document.

	A fields list, which defines the fields in the documents that should be added to the index.

	A documents list, including a set of dictionaries representing the documents we want to index.

And that’s it. The lunr function will create an index, configure it, add the documents and return the lunr.Index for you to start searching.

Build time boosts

New in version 0.4.0

Lunr also provides some very useful functionality for boosting at index building time. There are two types of boosts you can include: field boosts and document boosts.

Field boosts

Field boosts let Lunr know that, when searching, we care more about some fields than others, a typical example is adding a boost on the title of our documents so when searching for a term, if it is found in the title, the document will score higher.

To include a field boost we use the fields argument of the lunr function, instead of passing a list of strings as usual, we pass a list of dictionaries with two keys:

	field_name whose value will be the name of the field in the documents we want to index.

	boost an integer to be multiplied to the score when a match is found on this field.

For example:

>>> from lunr import lunr
>>> documents = [{
...: 'id': 'a',
...: 'title': 'Mr. Green kills Colonel Mustard',
...: 'body': """Mr. Green killed Colonel Mustard in the study with the
...: candlestick. Mr. Green is not a very nice fellow."""
...: }, {
...: 'id': 'b',
...: 'title': 'Plumb waters plant',
...: 'body': 'Professor Plumb has a green and a yellow plant in his study',
...: }, {
...: 'id': 'c',
...: 'title': 'Scarlett helps Professor',
...: 'body': """Miss Scarlett watered Professor Plumbs green plant
...: while he was away on his murdering holiday.""",
...: }]
>>> idx = lunr(
...: ref='id',
...: fields=[dict(field_name='title', boost=10), 'body'],
...: documents=documents
...:)

Note how we’re passing a dictionary only for title, body will have a neutral value for boost.

>>> idx.search('plumb')
[{'match_data': <MatchData "plumb">, 'ref': 'b', 'score': 1.599},
 {'match_data': <MatchData "plumb">, 'ref': 'c', 'score': 0.13}]

Note how the score for document b is much higher thanks to our field boost.

Document boosts

Document boosts let Lunr know that some documents are more important than others, for example we would like an FAQ page to show up higher in searches.

In Lunr we do this via the documents argument to the lunr function, instead of passing a list of dictionaries we pass a 2-tuple (or list) with the document dictionary as a first item and another dictionary as a second item. This second dictionary must have a single boost key with an integer to be applied to any matches on this particular document.

documents = [
 {
 'id': 'a',
 'title': 'Mr. Green kills Colonel Mustard',
 'body': """Mr. Green killed Colonel Mustard in the study with the
candlestick. Mr. Green is not a very nice fellow."""
 }, {
 'id': 'b',
 'title': 'Plumb waters plant',
 'body': 'Professor Plumb has a green and a yellow plant in his study',
 }, (
 {
 'id': 'c',
 'title': 'Scarlett helps Professor',
 'body': """Miss Scarlett watered Professor Plumbs green plant
 while he was away on his murdering holiday.""",
 }, {
 'boost': 10
 }
)]

Note how the third member of a list is a tuple, now if we pass these documents to the lunr function and perform a search:

>>> idx = lunr(ref='id', fields=('title', 'body'), documents=documents)
>>> idx.search('plumb')
[{'match_data': <MatchData "plumb">, 'ref': 'c', 'score': 1.297},
 {'match_data': <MatchData "plumb">, 'ref': 'b', 'score': 0.3}]

The score for c is now higher than b even though there are less matches, thanks to our document boost.

Field extractors

Up until now we’ve been working with fairly simple documents, but what if you have large nested documents and only want to index parts of them?

For this Lunr provides field extractors, which are simply callables that Lunr can use to fetch the field in the document you want to index. If you do not provide it, as we’ve been doing, Lunr assumes there’s a key matching the field name, i.e. title or body.

To pass a field extractor to Lunr we, once again, use the fields argument to the lunr function. Similarly to what we did to define field boosts we pass a list of dictionaries, but this time we add an extractor key whose value is a callable with a single argument, the document being processed. Lunr will call the extractor when fetching the indexed field and will use its result in our index.

Imagine our documents have a slightly different form where the reference is at the top level but our fields are nested under a content key:

documents = [{
 'id': 'a',
 'content': {
 'title': 'Mr. Green kills Colonel Mustard',
 'body': """Mr. Green killed Colonel Mustard in the study with the
candlestick. Mr. Green is not a very nice fellow."""
 }
}, {
 'id': 'b',
 'content': {
 'title': 'Plumb waters plant',
 'body': 'Professor Plumb has a green and a yellow plant in his study',
 }
}, {
 'id': 'c',
 'content': {
 'title': 'Scarlett helps Professor',
 'body': """Miss Scarlett watered Professor Plumbs green plant
 while he was away on his murdering holiday.""",
 }
}]

To work around this we simply need to add field extractors, which are simply callables that take a document as an argument and return the content of the field, in this case a simple lambda will do:

>>> idx = lunr(
... ref='id',
... fields=[
... dict(field_name='title', extractor=lambda d: d['content']['title']),
... dict(field_name='body', extractor=lambda d: d['content']['body'])
...],
... documents=documents)

We can now search the index as usual:

>>> idx.search('plumb')
[{'ref': 'b', 'score': 0.3, 'match_data': <MatchData "plumb">}
 {'ref': 'c', 'score': 0.13, 'match_data': <MatchData "plumb">}]

Language support

Lunr includes optional and experimental support for languages other than English via the Natural Language Toolkit [http://www.nltk.org/]. To install Lunr with this feature use pip install lunr[languages].

The currently supported languages are:

	Arabic

	Danish

	Dutch

	English

	Finnish

	French

	German

	Hungarian

	Italian

	Norwegian

	Portuguese

	Romanian

	Russian

	Spanish

	Swedish

>>> documents = [
... {
... "id": "a",
... "text": (
... "Este es un ejemplo inventado de lo que sería un documento en el "
... "idioma que se más se habla en España."),
... "title": "Ejemplo de documento en español"
... },
... {
... "id": "b",
... "text": (
... "Según un estudio que me acabo de inventar porque soy un experto en"
... "idiomas que se hablan en España."),
... "title": "Español es el tercer idioma más hablado del mundo"
... },
...]

New in 0.5.1: the lunr function now accepts more than one language

Simply define specify one or more ISO-639-1 codes [https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes] for the language(s) of your documents in the languages parameter to the lunr function.

!!! Note
In versions of Lunr prior to 0.5.0 the parameter’s name is language and accepted a single string.

If you have a single language you can pass the language code in languages:

>>> from lunr import lunr
>>> idx = lunr('id', ['title', 'text'], documents, languages='es')
>>> idx.search('inventando')
[{'ref': 'a', 'score': 0.130, 'match_data': <MatchData "invent">},
{'ref': 'b', 'score': 0.089, 'match_data': <MatchData "invent">}]

!!! Note
In order to construct stemmers, trimmers and stop word filters Lunr imports corpus data from NLTK which fetches data from Github and caches it in your home directory under nltk_data by default. You may see some logging indicating such activity during the creation of the index.

If you have documents in multiple language pass a list of language codes:

>>> documents.append({
 "id": "c",
 "text": "Let's say you also have documents written in English",
 "title": "A document in English"
 })
>>> idx = lunr('id', ['title', 'text'], documents, languages=['es', 'en'])
>>> idx.search('english')
[{'ref': 'c', 'score': 1.106, 'match_data': <MatchData "english">}]

Notes on language support

	Using multiple languages means the terms will be stemmed once per language. This can yield unexpected results.

	Compatibility with Lunr.js is ensured for languages that supported by both platforms, however results might differ slightly.

	Languages supported by Lunr.js but not by Lunr.py:

	Thai

	Japanese

	Turkish

	Languages supported by Lunr.py but not Lunr.js:

	Arabic

	The usage of the language feature is subject to NTLK corpus licensing clauses [https://github.com/nltk/nltk#redistributing]

Interoperability with Lunr.js

A key goal of Lunr.py is interoperability with Lunr.js: building an index with
Lunr.py and being able to read it using Lunr.js without having to build it
on the client on each visit.

The key step in this process is index serialization, which is possible thanks
to lunr-schema [https://github.com/olivernn/lunr-schema].

The serialization process in Lunr.py consist on calling Index.serialize,
here is a complete example with the data from the introduction:

>>> import json
>>> from lunr import lunr
>>> documents = [{
...: 'id': 'a',
...: 'title': 'Mr. Green kills Colonel Mustard',
...: 'body': """Mr. Green killed Colonel Mustard in the study with the
...: candlestick. Mr. Green is not a very nice fellow."""
...: }, {
...: 'id': 'b',
...: 'title': 'Plumb waters plant',
...: 'body': 'Professor Plumb has a green and a yellow plant in his study',
...: }, {
...: 'id': 'c',
...: 'title': 'Scarlett helps Professor',
...: 'body': """Miss Scarlett watered Professor Plumbs green plant
...: while he was away on his murdering holiday.""",
...: }]
>>> idx = lunr(
...: ref='id',
...: fields=[dict(field_name='title', boost=10), 'body'],
...: documents=documents
...:)
>>> serialized_idx = idx.serialize()
>>> with open('idx.json', 'w') as fd:
...: fd.write(json.dump(serialized_idx))

As you can see serialize will produce a JSON friendly dict you can write to
disk and read from Lunr.js. The following snippet shows how to read the index
using Node.js:

> const fs = require('fs')
> const lunr = require('lunr')
> const serializedIndex = JSON.parse(fs.readFileSync('idx.json'))
> let idx = lunr.Index.load(serializedIndex)
> idx.search('plant')
[
 {
 ref: 'b',
 score: 1.599,
 matchData: { metadata: [Object: null prototype] }
 },
 {
 ref: 'c',
 score: 0.13,
 matchData: { metadata: [Object: null prototype] }
 }
]

!!! Note
The search will only the references of the matching documents.
It is up to you to keep mapping of the documents in memory to be able show richer
results which means in a web environment you will need to serve two files,
one for the index and another the collection of documents.

Loading a serialized index

You can also do the reverse operation of reading a serialized index produced
by Lunr.py or Lunr.js using the Index.load class method:

>>> import json
>>> from lunr.index import Index
>>> with open("idx.json") as fd:
... serialized_idx = json.loads(fd.read())
...
>>> idx = Index.load(serialized_idx)
>>> idx.search("plant")
[{'ref': 'b', 'score': 1.599, 'match_data': <MatchData "plant">}, {'ref': 'c', 'score': 0.13, 'match_data': <MatchData "plant">}]

Language support

Lunr.js uses the
lunr-languages [https://lunrjs.com/guides/language_support.html] package,
a community driven collection of stemmers and trimmers for many languages.

Porting each of those into Python was not feasible so Lunr.py uses NTLK
for language support and will configure the serialized index as expected by Lunr.js
to ensure compatibility.

However, this produces differences in scoring when loading indices from Lunr.py
into Lunr.js larger than those observed using the base english implementation,
due to inherent differences in the implementation of said stemmers and trimmers.

Changelog

0.6.2 (2022-02-27)

	Add Pipeline.skip method to skip pipeline functions on specific fields
@tristanlatr

Deprecation warning

	0.6.2 will be the last release to support Python 3.6.

0.6.1 (2021-10-16)

	Add support for Python 3.10.

	Remove pin to NLTK < 3.5.

0.6.0 (2021-04-22)

	Add index customisation, enabling build and search pipeline tweaks as well as
meta-data whitelisting.

0.5.9 (2021-01-10)

	Compatibility with Lunr.js 2.3.9:

	Fix bug where clause matches are incorrectly initialized to a complete set.

	Add support for Python 3.9

	Drop support for Python 3.5

0.5.8 (2020-04-16)

	Fix installing ntlk in 2.7 without languages extra.

	Optimize regexes and avoid usage by default.

Deprecation warning

	0.5.8 will be the last release to support Python 2.7.

0.5.7 (2020-04-14)

	Prevent installing an unsupported version of NLTK in Python 2.7.

0.5.6 (2019-11-17)

	Support for Python 3.8

	Compatibility with Lunr.js 2.3.8:

	Fix bug where leading white space would cause token position metadata to be reported incorrectly.

0.5.5 (2019-04-28)

	Compatibility with Lunr.js 2.3.6:

	Fix bug with fuzzy matching that meant deletions at the end of a word would not match.

0.5.4 (2018-11-10)

	Compatibility with Lunr.js 2.3.5:

	Fix bug on fuzzy matching ignoring matches on insertions at the end of the word.

0.5.3 (2018-09-08)

	Performance improvements on indexing

	Compatibility with Lunr.js 2.3.3:

	Fixes catastrophic backtracking on leading wildcards

0.5.2 (2018-08-25)

	Fix Python 2.7 support

0.5.1 (2018-08-25)

	Added multilanguage support

	Improved language support

Deprecation warning

	The language argument to the lunr has been renamed to languages to accomodate for multilanguage support. The languages argument accepts a string or an iterable of ISO-639-1 languages codes. If you’re calling lunr with keyword arguments please update such calls accordingly.

0.4.3 (2018-08-18)

	Target Lunr.js v2.3.2

0.4.2 (2018-07-28)

	Target Lunr.js v2.3.1

	Fix crash when using non-string document references.

0.4.1 (2018-07-07)

	Added support for Python 3.7

0.4.0 (2018-06-25)

	Compatibility with Lunr.js v2.3.0. Including:

	Add support for build time field and document boosts.

	Add support for indexing nested document fields using field extractors.

	Prevent usage of problematic characters in field names

0.3.0 (2018-06-03)

	Compatibility with Lunr.js v2.2.1. Including:

	Add support for queries with term presence, e.g. required terms and prohibited terms.

	Add support for using the output of lunr.Tokenizer directly with lunr.Query.term.

	Add field name metadata to tokens in build and search pipelines.

0.2.3 (2018-05-19)

	Compatibility with Lunr.js v2.1.6

0.2.2 (2018-05-15)

	Fix bug on whitelisting metadata in Builder.

0.2.1 (2018-04-21)

	Refactor of multilanguage support.

0.2.0 (2018-04-15)

	Experimental support for languages via NLTK, currently supported languages are arabic, danish, dutch, english, finnish, french, german, hungarian, italian, norwegian, portuguese, romanian, russian, spanish and swedish. Note compatibility with Lunr.js and lunr-languages is reduced.

0.1.2 (2018-03-17)

	Add serialization tests passing serialized index from Python to JS and producing same results.

	Added Index.create_query returning a preinitialized Query with the index’s fields or a subset of them.

	Index.search does not accept a callback function, instead expects a Query object the user should preconfigure first.

	Various docstring and repr changes.

0.1.1a1 (2018-03-01)

	Initial release

Customisation

Lunr.py ships with some sensible defaults to create indexes and search easily,
but in some cases you may want to tweak how documents are indexed and search.
You can do that in lunr.py by passing your own Builder instance to the lunr
function.

Pipeline functions

When the builder processes your documents it splits (tokenises) the text, and
applies a series of functions to each token. These are called pipeline functions.

The builder includes two pipelines, indexing and searching.

If you want to change the way lunr.py indexes the documents you’ll need to
change the indexing pipeline.

For example, say you wanted to support the American and British way of spelling
certain words, you could use a normalisation pipeline function to force one
token into the other:

from lunr import lunr, get_default_builder
import lunr.pipeline.Pipeline

documents = [...]

builder = get_default_builder()
def normalise_spelling(token, i, tokens) {
 if str(token) == "gray":
 return token.update(lambda: "grey")
 else:
 return token

lunr.pipeline.Pipeline.register_function(normalise_spelling)
builder.pipeline.add(normalise_spelling)

idx = lunr(ref="id", fields=("title", "body"), documents=documents, builder=builder)

Note pipeline functions take the token being processed, its position in the
token list, and the token list itself.

Skip a pipeline function for specific field names

The Pipeline.skip() method allows you to skip a pipeline function for specific field names.
This example skips the stop_word_filter pipeline function for the field fullName.

from lunr import lunr, get_default_builder, stop_word_filter

documents = [...]

builder = get_default_builder()

builder.pipeline.skip(stop_word_filter.stop_word_filter, ["fullName"])

idx = lunr(ref="id", fields=("fullName", "body"), documents=documents, builder=builder)

Token meta-data

Lunr.py Token instances include meta-data information which can be used in
pipeline functions. This meta-data is not stored in the index by default, but it
can be by adding it to the builder’s metadata_whitelist property. This will
include the meta-data in the search results:

from lunr import lunr, get_default_builder
import lunr.pipeline.Pipeline

builder = get_default_builder()

def token_length(token, i, tokens):
 token.metadata["token_length"] = len(str(token))
 return token

Pipeline.register_function(token_length)
builder.pipeline.add(token_length)
builder.metadata_whitelist.append("token_length")

idx = lunr("id", ("title", "body"), documents, builder=builder)

[result, _, _] = idx.search("green")
assert result["match_data"].metadata["green"]["title"]["token_length"] == [5]
assert result["match_data"].metadata["green"]["body"]["token_length"] == [5, 5]

Similarity tuning

The algorithm used by Lunr to calculate similarity between a query and a document
can be tuned using two parameters. Lunr ships with sensible defaults, and these
can be adjusted to provide the best results for a given collection of documents.

	b: This parameter controls the importance given to the length of a
document and its fields. This value must be between 0 and 1, and by default it
has a value of 0.75. Reducing this value reduces the effect of different length
documents on a term’s importance to that document.

	k1: This controls how quickly the boost given by a common word reaches
saturation. Increasing it will slow down the rate of saturation and lower values
result in quicker saturation. The default value is 1.2. If the collection of
documents being indexed have high occurrences of words that are not covered by
a stop word filter, these words can quickly dominate any similarity calculation.
In these cases, this value can be reduced to get more balanced results.

These values can be changed in the builder:

from lunr import lunr, get_default_builder

builder = get_default_builder()
builder.k1(1.3)
builder.b(0)

idx = lunr("id", ("title", "body"), documents, builder=builder)

Index

 nav.xhtml

 Table of Contents

 		
 Lunr.py 🌖

_static/plus.png

_static/file.png

_static/minus.png

